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1. Introduction and Motivation

Hyperparameter Optimization

➢ More recently, the surge in the demand for HPO is not only in pursuit of prediction accuracy but also for 
ensuring the efficiency and robustness of models, which leads to Multi-Objective HPO (MOHPO).

➢ Addressing Hyperparameter Optimization (HPO) problem has long been challenging as it involves resource-
intensive model training that prevents optimizers from exhaustively exploring the hyperparameter space. 
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1. Introduction and Motivation

MOHPO with Iterative Learning Procedure

➢ Minimizing an MOHPO is equivalent to finding trade-offs 
between performances at the end of training.

min
𝒙 ∈ 𝕏

𝒇 𝒙 = 𝑓1 𝒙 , 𝑓2 𝒙

❑ A solution dominates another if it is no worse in all objectives and 
strictly better in at least one.

❑ The Pareto-optimal front  consists of all non-dominated solutions
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1. Introduction and Motivation

➢ Minimizing an MOHPO is equivalent to finding trade-offs 
between performances at the end of training.

MOHPO with Iterative Learning Procedure

➢ Training ML model is an iterative learning procedure, 
allowing epoch-wise tracking on model performances. 

❑ Does a trade-off emerge when the number of training epochs is 
fewer than the maximum allowed? 

❑ E.g., (1) Partially-trained model; (2) Overfitting.

min
𝒙 ∈ 𝕏

𝒇 𝒙 = 𝑓1 𝒙 , 𝑓2 𝒙

❑ A solution dominates another if it is no worse in all objectives and 
strictly better in at least one.

❑ The Pareto-optimal front  consists of all non-dominated solutions

min
(𝒙,𝑡) ∈ 𝕏×𝕋

𝒇 𝒙, 𝑡 = 𝑓1 𝒙, 𝑡 ,  𝑓2 𝒙, 𝑡
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2. Problem and Methodology

2.1 Enhanced Multi-Objective Hyperparameter Tuning

2.2 Trajectory-Based Bayesian Optimization Approach

Outline
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2.1 Enhanced Multi-Objective Hyperparameter Tuning

Enhanced Multi-Objective Hyperparameter Optimization Problem

Consider the sequential minimization of an EMOHPO in the following form:

❑ 𝒙 denotes a 𝑑-dimensional hyperparameter setting with 𝒙 ∈ 𝕏 ⊂ ℝ𝑑.

❑ 𝑡 denotes the number of training epochs with 𝑡 ∈ 𝕋 = {1, … , 𝑡𝑚𝑎𝑥}.

❑ 𝒇:  𝕏 ×  𝕋 ↦ ℝ𝑘  comprises 𝑘 objectives, each of which represents a specific performance measure of the ML model 
after training with setting 𝒙 for 𝑡 epochs. 

min
𝒙,𝑡  ∈ 𝕏×𝕋

𝒇 𝒙, 𝑡 = [𝑓1 𝒙, 𝑡 , … , 𝑓𝑘(𝒙, 𝑡)] , (2)
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2.1 Enhanced Multi-Objective Hyperparameter Tuning

Enhanced Multi-Objective Hyperparameter Optimization Problem

Consider the sequential minimization of an EMOHPO in the following form:

❑ 𝒙 denotes a 𝑑-dimensional hyperparameter setting with 𝒙 ∈ 𝕏 ⊂ ℝ𝑑.

❑ 𝑡 denotes the number of training epochs with 𝑡 ∈ 𝕋 = {1, … , 𝑡𝑚𝑎𝑥}.

❑ 𝒇:  𝕏 ×  𝕋 ↦ ℝ𝑘  comprises 𝑘 objectives, each of which represents a specific performance measure of the ML model 
after training with setting 𝒙 for 𝑡 epochs. 

❑ Assume that when querying at any feasible pair 𝒛 = 𝒙, 𝑡 ∈ 𝕏 ×  𝕋,

min
𝒙,𝑡  ∈ 𝕏×𝕋

𝒇 𝒙, 𝑡 = [𝑓1 𝒙, 𝑡 , … , 𝑓𝑘(𝒙, 𝑡)] , (2)

• Noisy Observation: Each observed model performance is noisy, i.e., for any 𝑖 = 1, … , 𝑘,

𝑦𝑖 𝒙, 𝑡 = 𝑓𝑖 𝒙, 𝑡 + 𝜀𝑖 and 𝜀𝑖 ∼ 𝒩 0, 𝜎𝑖
2 .

• Iterative Learning: A sequence of multi-objective model performances are observed, i.e., 𝒚 𝒙, 1 , … , 𝒚 𝒙, 𝑡  with

𝒚 𝒙, 𝜏 = 𝑦1 𝒙, 𝜏 , … , 𝑦𝑘 𝒙, 𝜏 , ∀𝜏 = 1, … , 𝑡.
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2.1 Enhanced Multi-Objective Hyperparameter Tuning

Challenges in Solving EMOHPO

1. How to make prediction on trajectory?
➢ The model should be able to capture the characteristics of the

trajectory as the epoch changes.

In the objective space of EMOHPO,
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2.2 Trajectory-Based Bayesian Optimization Approach

Gaussian Process for Trajectory Prediction

𝑓 𝑍 ∼ 𝒩 0, 𝐾 𝑍, 𝑍 , (3)

𝑓 𝒛  | 𝑍, 𝑌 ∼ 𝒩 𝜇 𝒛 , Σ 𝒛 , (4)

➢ The Prior:

❑ Consider a function 𝑓(𝒛) to be sampled from a Gaussian Process (GP) with
kernel 𝐾 𝒛, 𝒛′ and let 𝐾 𝑍, 𝑍 ∈ ℝ𝑛×𝑛 with 𝐾 𝑍, 𝑍 𝑖,𝑗 = 𝐾(𝒛𝑖 , 𝒛𝑗).

➢ The Posterior:

❑ Conditioning on the observations 𝑌 = 𝑦𝑖 𝑖=1
𝑛  at 𝑍, the posterior predictive 

distribution at any input 𝒛 ∈ 𝑍 is given by,

❑ with 𝜇 𝒛 = 𝐾 𝒛, 𝑍 𝐾 𝑍, 𝑍 + 𝜎2𝐼 −1𝑌 and Σ 𝒛 = 𝐾 𝒛, 𝒛 − 𝐾 𝒛, 𝑍 𝐾 𝑍, 𝑍 + 𝜎2𝐼 −1𝐾 𝑍, 𝒛 . 



Wenyu Wang (wangwy@nus.edu.sg) UAI 2025 Thursday, 24 July 2025 12

2.2 Trajectory-Based Bayesian Optimization Approach

𝑓 𝑍 ∼ 𝒩 0, 𝐾 𝑍, 𝑍 , (3)

Gaussian Process for Trajectory Prediction

𝑓 𝒛  | 𝑍, 𝑌 ∼ 𝒩 𝜇 𝒛 , Σ 𝒛 , (4)

➢ The Prior:

❑ Consider a function 𝑓(𝒛) to be sampled from a Gaussian Process (GP) with
kernel 𝐾 𝒛, 𝒛′ and let 𝐾 𝑍, 𝑍 ∈ ℝ𝑛×𝑛 with 𝐾 𝑍, 𝑍 𝑖,𝑗 = 𝐾(𝒛𝑖 , 𝒛𝑗).

➢ The Posterior:

❑ Conditioning on the observations 𝑌 = 𝑦𝑖 𝑖=1
𝑛  at 𝑍, the posterior predictive 

distribution at any input 𝒛 ∈ 𝑍 is given by,

❑ with 𝜇 𝒛 = 𝐾 𝒛, 𝑍 𝐾 𝑍, 𝑍 + 𝜎2𝐼 −1𝑌 and Σ 𝒛 = 𝐾 𝒛, 𝒛 − 𝐾 𝒛, 𝑍 𝐾 𝑍, 𝑍 + 𝜎2𝐼 −1𝐾 𝑍, 𝒛 . 

𝐾 𝒛, 𝒛′ = 𝐾1 𝒙, 𝒙′ × 𝐾2 𝑡, 𝑡′

Kernel over epoch
e.g., Exponential decay or linear kernel

Kernel over hyperparameter setting
e.g., Matérn kernel

➢ Product Kernel:

❑ As a pair 𝒛 = 𝒙, 𝑡 ∈ 𝕏 ×  𝕋, a kernel can be decomposed into two parts to capture the iterative learning characteristics
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2.1 Enhanced Multi-Objective Hyperparameter Tuning

Challenges in Solving EMOHPO

2. How to sequentially determine next hyperparameter 
setting with trajectory prediction? (i.e., new 𝒙′)

1. How to make prediction on trajectory?

➢ Assessing the quality of a setting requires consideration of its entire 
trajectory instead of a single position.

➢ The model should be able to capture the characteristics of the
trajectory as the epoch changes.

In the objective space of EMOHPO,
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2.2 Trajectory-Based Bayesian Optimization Approach

Choose Setting 𝒙′ - Trajectory-Based Acquisition Function

Hypervolume
𝐻𝑉 𝐹 𝒓)

Definition 1: Hypervolume Improvement (HVI)

Given a front 𝐹 and a fixed point 𝒓, the HVI of an objective vector 𝒚′ is the
change in Hypervolume before and after including 𝒚′ into the front 𝐹, i.e.,

𝐻𝑉𝐼 𝒚′ 𝐹, 𝒓) = 𝐻𝑉 𝐹 ∪ {𝒚′} 𝒓)  − 𝐻𝑉 𝐹 𝒓).

Front 𝐹
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2.2 Trajectory-Based Bayesian Optimization Approach

Definition 1: Hypervolume Improvement (HVI)

Given a front 𝐹 and a fixed point 𝒓, the HVI of an objective vector 𝒚′ is the
change in Hypervolume before and after including 𝒚′ into the front 𝐹, i.e.,

𝐻𝑉𝐼 𝒚′ 𝐹, 𝒓) = 𝐻𝑉 𝐹 ∪ {𝒚′} 𝒓)  − 𝐻𝑉 𝐹 𝒓).

Front 𝐹

Choose Setting 𝒙′ - Trajectory-Based Acquisition Function

Definition 3: Trajectory-Based Expected HVI (TEHVI)

TEHVI estimates the gain of an out-of-sample setting 𝒙 by taking the
expectation of HVI over the predictive distribution of its trajectory,

𝑇𝐸𝐻𝑉𝐼 𝒙 𝐹, 𝒓) ≔ 𝔼 𝐻𝑉𝐼 𝑇𝑟𝑗 𝒙  𝐹, 𝒓 ] = 𝔼 𝐻𝑉𝐼 𝒇 𝒙, 𝑡 𝑡=1
𝑡𝑚𝑎𝑥  | 𝐹, 𝒓 . ≈ argmax

𝒙 ∈ 𝕏

1

𝑀
෍

𝑚=1

𝑀

𝐻𝑉𝐼 ෢𝑇𝑟𝑗𝑚 𝒙  | 𝐹, 𝒓

Definition 2: Trajectory

The trajectory of a hyperparameter setting 𝒙 is defined as the collection of all
model performances observed during the entire training with 𝒙, i.e., 

𝑇𝑟𝑗 𝒙 ≔ {𝒇 𝒙, 𝑡 }𝑡=1
𝑡𝑚𝑎𝑥 = {𝑓1 𝒙, 𝑡 , … , 𝑓𝑘 𝒙, 𝑡 }𝑡=1

𝑡𝑚𝑎𝑥 .

by Monte Carlo integration

Hypervolume
𝐻𝑉 𝐹 𝒓)
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2.1 Enhanced Multi-Objective Hyperparameter Tuning

Challenges in Solving EMOHPO

2. How to sequentially determine next hyperparameter 
setting with trajectory prediction? (i.e., new 𝒙′)

3. How to execute early stopping without compromising
optimization results? (i.e., new 𝑡′)

1. How to make prediction on trajectory?

➢ Assessing the quality of a setting requires consideration of its entire 
trajectory instead of a single position.

➢ A training procedure should only be stopped after as many trade-offs 
as possible have been observed along trajectory.

➢ The model should be able to capture the characteristics of the
trajectory as the epoch changes.

In the objective space of EMOHPO,
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2.2 Trajectory-Based Bayesian Optimization Approach

Choose Epoch 𝑡′ - Trajectory-Based Early Stopping

➢ Conservative stopping epoch

❑ Intuitively, 𝑡∗ is the number of epochs after which 
future training results are unlikely to improve front 𝐹.

𝑡∗ = sup 𝑡 ∈ 𝕋 𝝁 𝒙′, 𝑡 − 𝛽𝚺 𝒙′, 𝑡 ≺ 𝒚, ∃𝒚 ∈ 𝐹}

❑ 𝝁 𝒙′, 𝑡 − 𝛽𝚺 𝒙′, 𝑡 denotes the lower bound of the
performance at 𝑡, with 𝛽 controls the confidence level.



Wenyu Wang (wangwy@nus.edu.sg) UAI 2025 Thursday, 24 July 2025 19

2.2 Trajectory-Based Bayesian Optimization Approach

Choose Epoch 𝑡′ - Trajectory-Based Early Stopping

➢ Conservative stopping epoch

❑ Intuitively, 𝑡∗ is the number of epochs after which 
future training results are unlikely to improve front 𝐹.

➢ Early stopping strategy (𝑡′ increases from 1 to 𝑡𝑚𝑎𝑥):

❑ if 𝑡′ ≤ 𝑡∗, continue training with 𝑥′ for one epoch and 
let 𝑡′ = 𝑡′ + 1 and recompute 𝑡∗;

𝑡∗ = sup 𝑡 ∈ 𝕋 𝝁 𝒙′, 𝑡 − 𝛽𝚺 𝒙′, 𝑡 ≺ 𝒚, ∃𝒚 ∈ 𝐹}

❑ if 𝑡′ > 𝑡∗, terminate the training with 𝑥′ immediately. 

❑ 𝝁 𝒙′, 𝑡 − 𝛽𝚺 𝒙′, 𝑡 denotes the lower bound of the
performance at 𝑡, with 𝛽 controls the confidence level.
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3. Numerical Experiments

Outline
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3. Numerical Experiments

Results on Synthetic Simulations

➢ Over 20 independent trials, the solutions obtained by TMOBO generally dominate a large proportion of those 
obtained by three alternative enhanced multi-objective optimizers.

❑ E.g., 𝑞NEHVI-T denotes the enhanced 𝑞NEHVI[3] by collecting all trajectory observations, similarly for 𝑞EHVI-T and ParEGO-T.

min
𝒙,𝑡  ∈ 𝕏×𝕋

𝒇 𝒙, 𝑡 = [𝑓1 𝒙 ⋅ 𝑔1 𝑡 , … , 𝑓𝑘 𝒙 ⋅ 𝑔𝑘(𝑡)] .

➢ TMOBO consistently achieves the lowest HV difference over 5 ×  4 synthetic problems, which are modeled by

MO benchmark’s functions Functions to simulate iterative learning
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3. Numerical Experiments

Results on Real-World Benchmarks

❑ [Left] TMOBO and its variant TMOBO-nES outperform 𝑞NEHVI-T, with TMOBO
demonstrating faster early convergence.

❑ [Right] TMOBO reduces model training time more than TMOBO-nES, though it 
incurs slightly higher (but negligible) computation overhead.

➢ Tuning a more complex MobileNetV2 model[11] with iterative learning on 
CIFAR-10 image datasets:
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4. Conclusions

Outline
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4. Conclusions and Future Directions

Conclusions

➢ Considering MOHPO with iterative learning, our interest centers on (1) how trajectory information affects 
the distribution of trade-offs and (2) how to leverage this information to search trade-offs.

➢ For future research of this study

❑ Development of the analytical form or more efficient approximation for the computation of TEHVI.

❑ Application of scalable GP and more advanced data augmentation strategy in large-scale applications.

❑ Extend the EMOHPO framework to other scenarios, such as drug design and material engineering where an 
iterative procedure typically exists.

Problem Definition: Introduce EMOHPO problem by including the number of training epoch as an explicit decision 
variable to reveal the trade-offs that may occur along trajectories.

Methodology: Propose TMOBO method that iteratively samples setting based on trajectory-based contribution 
and decides when to stop training based on trajectory predictions.

Numerical Study: Show the advantage of TMOBO over alternative methods in locating trade-offs for EMOHPO 
through synthetic and real-world benchmarks.
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4. Conclusions and Future Directions
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